Synthesis and Characterization of Ethylidynearsine

Jean-Claude Guillemin,*,† Laurent Lassalle,† Pascal Dréan,‡ Georges Wlodarczak,‡ and Jean Demaison*,‡

Contribution from the Laboratoire de Physicochimie Structurale, URA CNRS 704. Université de Rennes 1, 35042 Rennes, France, and the Laboratoire de Spectroscopie Hertzienne, URA CNRS 249, Université de Lille 1, 59655 Villeneuve d'Ascq, France

Received April 20, 1994*

Abstract: Ethynylarsine (2a) is synthesized by reaction of arsenic trichloride with ethynyltributylstannane followed by a chemoselective reduction of the formed ethynyldichloroarsine (1a). The base-induced rearrangement of compound 2a on a solid base in VGSR conditions leads to ethylidynearsine (3a) characterized by ¹H and ¹³C NMR and by microwave spectroscopy. The rotational spectrum of 3a is recorded in the frequency range 90-470 GHz. Rotational and centrifugal distortion constants are determined and the quadrupole hyperfine structure is analyzed. The structure of CH₃C=As has been estimated from the rotational constants of eight different isotopic species and from *ab initio* calculations. Compound **3a** exhibits a low stability at 0 °C in deuteriochloroform ($\tau_{1/2}$ ca. 1 h) or in the gaseous phase at a pressure of 10 Pa ($\tau_{1/2}$ ca. 30 min).

Introduction

Although numerous phosphaalkynes have been described in the literature,¹ few experimental results have been reported on the corresponding arsenic derivatives, the arsaalkynes. Only the kinetically stabilized 2-(2,4,6-tri-tert-butylphenyl)-1-arsaethyne has been isolated until now.² The chemical trapping of tertbutylarsaalkyne (t-BuC=As) has recently been described, but all the attempts to spectroscopically characterize this derivative have failed.³ This is not very surprising since compounds containing an -As=C< bond such as arsinines⁴ and arsaalkenes⁵ are less stable than the corresponding phosphorus derivatives. In a previous paper, some of us have reported the base-induced rearrangement of ethynylphosphines into the corresponding phosphaalkynes.⁶ We now report the chemoselective reduction of ethynyldichloroarsine (1a) into the corresponding ethynylarsine (2a) and the base-induced rearrangement of 2a into ethylidynearsine (3a). Spectroscopic characterization of arsaalkyne 3a was performed by low-temperature ¹H and ¹³C NMR and by microwave spectroscopy.

Experimental Section

Caution: Arsines are potentially highly toxic molecules. All reactions and handling should be carried out in a well-ventilated hood.

Materials. Arsenic trichloride (Strem), dibutyl ether, and decahydronaphthalene (Janssen) and acetylene (H¹²C=¹²CH (Alphagaz) and $H^{13}C = {}^{13}CH$ (Euriso-Top, CEA)) were used without further purification. Tributylethynylstannane (4a),⁷ ethynylenebis(triethylstannane), ethynylenebis(tributylstannane),⁷ tributylstannane,⁸ and tributylstannane-d⁹ were prepared as previously reported.

General. ¹H and ¹³C NMR spectra were recorded on a Bruker AC-300P spectrometer. The spectra of the parent compounds are fully

(2) Märkl, G.; Sejpka, H. Angew. Chem., Int. Ed. Engl. 1986, 25, 264. (3) Hitchcock, P. B.; Johnson, J. A.; Nixon, J. F. Angew. Chem., Int. Ed. Engl. 1993, 32, 103-104

(4) Märkl, G; Liebl, R.; Baier, H. Liebigs Ann. Chem. 1981, 1610-1632. (5) Klebach, T. C.; Van Dongen, H.; Bickelhaupt, F. Angew. Chem., Int.

Ed. Engl. 1979, 18, 395-396. Becker, G.; Gutekunst, G. Angew. Chem., Int. Ed. Engl. 1977, 16, 463-464. (6) Guillemin, J. C.; Janati, J.; Denis, J. M. J. Chem. Soc., Chem. Commun.

1992, 415-416.

(7) Bottaro, J. C.; Hanson, R. N.; Seitz, D. E. J. Org. Chem. 1981, 46, 5221-5222.

 (8) Kuivila, H. G. Synthesis 1970, 499-509.
 (9) Neumann, W. P.; Sommer, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 547

described: the chemical shifts of the isotopic species are almost identical with those of the corresponding parent compound and only the J_{CD} and $J_{\rm CC}$ coupling constants are given. IR spectra were obtained using a Perkin-Elmer 1420 spectrometer and HRMS (high resolution mass spectrometry) experiments were performed on a Varian MAT 311 instrument. Special equipment was used for recording the IR spectrum of 2a in the gas phase: a small Pyrex tube (l = 10 cm, i.d. = 3 cm) equipped with a stopcock and sealed at each extremity with a KBr window was filled with pure ethynylarsine to a pressure of 100 hPa. To record the mass spectrum, ethynylarsine (2a) was directly introduced from a cell into the ionization chamber of the spectrometer.

Triethyl(ethynyl-d)stannane (4b). The procedure of Bogoradovski et al. has been modified.¹⁰ A mixture of 50 mmol of ethynylenebis-(triethylstannane)⁷ and 55 mmol of 1-butanethiol-d (prepared by addition of D₂O on acetyl chloride followed by bubbling of the formed DCl in an etheral solution of 1-butanethiol, sodium salt) was stirred for 3 h at 80 °C. By distillation, compound 4b was isolated in a 62% yield: bp0.1 66 °C (${}^{1}J_{CD} = 35.5 \text{ Hz}(t)$).

Tributyl(ethynyl- $^{13}C_2$)stannane (4c). This compound was prepared by the reported procedure⁷ from acetylene- ${}^{13}C_2$ (${}^{1}J_{CC} = 117.4$ Hz (d)).

Tributyl(ethynyl-13C3d)stannane (4d). This compound was prepared by the procedure given above for 4b from (ethynylene- $^{13}C_2$)bis-(tributylstannane) and 1-butanethiol-d.

Ethynylarsinous Dichloride (1a). In a 25-mL two-necked roundbottomed flask equipped with a nitrogen gas inlet was introduced arsenic trichloride (2.0 g, 11 mmol). The reagent was frozen to -40 °C and the ethynyltributylstannane (3.2 g, 10 mmol) was added. The solution was then vigorously stirred and allowed to warm to room temperature over 10 min. Distillation of the volatile compounds gave a mixture containing ethynylarsinous dichloride (1a) (yield (crude product): 75%) in the presence of impurities, diethynylarsinous chloride (7%) [¹H NMR (300 MHz, CDCl₃) δ 3.14 (s, H=); ¹³C NMR (75.5 MHz, CDCl₃) δ 82.0 (d, ${}^{2}J_{CH} = 44.3 \text{ Hz}, \equiv C-As), 97.1 (d, {}^{1}J_{CH} = 250.2 \text{ Hz}, \equiv CH)],$ triethynylarsine¹¹ (18%), and arsenic chloride (20%). Purification of arsine 1a by trap-to-trap distillation led to a significant loss of product. Therefore, the crude mixture was used in the following step without further purification. Crude 1a must be kept at low temperature (-20 °C): ¹H NMR (300 MHz, CDCl₃) δ 3.43 (s, H=); ¹³C NMR (75.5 MHz, CDCl₃) δ 87.9 (d, ²J_{CH} = 43.2 Hz, =C-As), 99.9 (d, ¹J_{CH} = 251.5 Hz, =CH).

(Ethynyl-d)arsinous Dichloride (1b). This compound was prepared by the procedure given above from (triethylethynyl-d)stannane (4b) $({}^{1}J_{CD}$ = 19.3 Hz(t)).

University of Rennes. [‡]University of Lille.

Abstract published in Advance ACS Abstracts, August 15, 1994.
 (1) Regitz, M. Chem. Rev. 1990, 90, 191–213.

⁽¹⁰⁾ Bogoradovskii, E. T.; Cherkasov, V. N.; Zavgorodnii, V. S.; Rogozev,

B. I.; Petrov, A. A. J. Gen. Chem. USSR 1980, 50, 1641–1649.
 (11) Voskuil, W.; Arens, J. F. Rec. Trav. Chim. Pays-Bas 1964, 83, 1301– 1304

(Ethynyl-¹³C₂)arsinous Dichloride (1c). This compound was prepared by the procedure given above from (tributylethynyl-¹³C₂)stannane (4c) (${}^{1}J_{CC} = 146.2$ Hz (d)).

(Deuterioethynyl- ${}^{13}C_2d$) arsinous Dichloride (1d). This compound was prepared by the procedure given above from (ethynyl- ${}^{13}C_2,d$) tributylstannane (4d).

Ethynylarsine (2a). In a 50-mL two-necked flask were introduced Bu₃SnH¹² (8.7 g, 30 mmol) and decahydronaphthalene (10 mL). The flask was fitted on a vacuum line equipped with a stopcock, a cold trap, and a cold finger.¹³ In an other flask, a solution of crude arsine 1a (8.0 mmol) in decahydronaphthalene (5 mL) was degassed and slowly transferred through a flex-needle onto the reducing mixture. To limit oligomerization, ethynylarsine was distilled off in vacuo from the reaction mixture during the course of the addition of 1a. High boiling impurities were selectively trapped in the cold trap (-95 °C) and ethynylarsine (2a) was condensed with a cosolvent on the cold finger (-196 °C). After disconnection from the vacuum line, the apparatus was filled with dry nitrogen and the cold finger was allowed to warm to room temperature. Thus, compound 2a was collected in a Schlenk flask or in a NMR tube and was kept at low temperature (-40 °C) (similar results were obtained using an excess of Bu₃SnH in absence of solvent or using AlHCl₂¹³ diluted in ethoxyethyl ether as reducing agent): 0.28 g, 34%; ¹H NMR (300 MHz, CDCl₃, $-30 \circ$ C) $\delta 2.37$ (t, ${}^{4}J_{HH} = 2.8$ Hz, H-C=), 3.40 (d, ${}^{4}J_{HH}$ = 2.8 Hz, H₂As); ¹³C NMR (75.5 MHz, CDCl₃) δ 71.5 (dt, ²J_{CH} = 45.6 Hz, ${}^{2}J_{CH} = 6.6$ Hz, = C - As), 92.6 (dt, ${}^{1}J_{CH} = 245.3$ Hz, ${}^{3}J_{CH} = 3.8$ Hz, =C-H); IR (gaseous phase, 100 hPa, cm⁻¹) $\nu_{=CH}$ 3318, $\nu_{C=C}$ 2180, vAs-H 2118; HRMS calcd for C2H3As 101.9451, obsd 101.945; MS, m/z (rel intensity) 103 (4), 102 (100), 101 (64), 100 (26), 99 (10), 76 (14), 75 (35); CAD 101, 100; CAD-MIKE 101, 100, 87, 75, 27.

(Ethynyl-d)arsine (2b). This compound was prepared by the procedure given above from (ethynyl-d)arsinous dichloride (1b) using tributyl-stannane as reducing agent (${}^{1}J_{CD} = 32.1 \text{ Hz}$ (t), ${}^{2}J_{CD} = 7.1 \text{ Hz}$ (t)).

Ethynylarsine- $d_2(2c)$. This compound was prepared by the procedure given above from ethynylarsinous dichloride (1a) and tributylstannane-d.

(Ethynyl-d) arsine- d_2 (2d). This compound was prepared by the procedure given above from (ethynyl-d) arsinous dichloride (1b) and tributyl stannane-d as reducing agent.

(Ethynyl-¹³C₂)arsine (2e). This compound was prepared by the procedure given above from (ethynyl-¹³C₂)arsinous dichloride (1c) (${}^{1}J_{CC}$ = 147.2 Hz (d)).

(Ethynyl-¹³ C_{2} d) arsine- d_2 (2f). This compound was prepared by the procedure given above from (ethynyl-d) arsinous dichloride (1d) and tributylstannane-d.

Ethylidynearsine (3a). The reaction was performed under VGSR conditions.14 Powdered and dried sodium carbonate (15g) was introduced into a VGSR reactor (l = 30 cm, i.d. = 3.5 cm Pyrex tube) and then horizontally distributed between two pads of glass wool 20 cm distant from each other. This reactor was fitted onto a vacuum line equipped with a cold trap and a cold finger. Ethynylarsine (2a) (0.51 g, 5.0 mmol) diluted in dibutyl ether (30 mL) and cooled at -70 °C was fitted on the vacuum line. Pure ethynylarsine (2a) was slowly vaporized in vacuo through the reactor heated to 80 °C. Ethylidynearsine (3a) and a cosolvent were condensed on the cold finger (-196 °C). After disconnection from the vacuum line, the apparatus was filled with dry nitrogen and the cold finger was allowed to warm to room temperature. Thus, compound 3a was collected in a Schlenk flask or in a NMR tube and was kept at low temperature (-60 °C) (0.15 g, 29%): ¹H NMR (300 MHz, CDCl₃, -30 °C) δ 2.09 (s, CH₃); ¹³C NMR (75.5 MHz, CDCl₃, -30 °C) δ 24.2 (q, ${}^{1}J_{CH} = 132.0 \text{ Hz}, \text{CH}_{3}$, 196.4 (q, ${}^{2}J_{CH} = 12.5 \text{ Hz}, \text{C}=As$).

Ethylidynearsine-d(3b). This compound was prepared by the procedure given above from (ethynyl-d)arsine (2b) (${}^{1}J_{CD} = 19.6$ Hz (t)).

Ethylidynearsine- d_2 (3c). This compound was prepared by the procedure given above from ethynylarsine (2c).

Ethylidynearsine- d_3 (3d). This compound was prepared by the procedure given above from (ethynyl-d)arsine- d_2 (2d).

Ethylidynearsine-¹³C₂ (3e). This compound was prepared by the procedure given above from (ethynyl-¹³C₂)arsine (2e) (${}^{1}J_{CC} = 41.3$ Hz (d)).

Ethylidynearsine- $^{13}C_2d_3$ (3f). This compound was prepared by the procedure given above from (ethynyl- $^{13}C_2d$) arsine- d_2 (2f).

Microwave Spectroscopy. Rotational spectra in the frequency range 90-200 GHz were measured with a computer controlled millimeterwave spectrometer using superheterodyne detection.¹⁵ This spectrometer uses klystrons or Gunn diodes followed by Schottky diodes as multiplier or mixer for the source oscillator as well as for the local oscillator. The signal was averaged and filtered and the line frequencies were calculated by a Macintosh II computer using the LabView software. The lines between 200 and 470 GHz were measured with a source-modulated spectrometer using either phase-stabilized submillimeter BWOs (range 340-470 GHz) or harmonics of a Gunn diode as sources and a He-cooled InSb bolometer as detector. This spectrometer uses the same signal processing system as the superheterodyne spectrometer. A Schlenk flask containing a mixture of ethynylarsine in dibutyl ether at -40 °C was adapted at an extremity of a Pyrex tube (l = 8 cm, i.d. = 2 cm) containing solid sodium carbonate and heated to 80 °C. The other extremity of the tube was directly connected to the absorption cell.

Quantum Mechanical Methods. Abinitio calculations were performed with the GAUSSIAN 92^{16} series of programs. The chemically inert, core electrons were replaced by an effective core potential where relativistic effects are incorporated. For that purpose the LANL1DZ basis set¹⁷ was employed. Electron correlation effects were included at the MP2 level.

Ethylidynearsine was pumped over sodium carbonate heated to 80 $^{\circ}$ C, and the resultant products were directly introduced in the cell. We did not attempt to purify ethylidynearsine because of its great instability. All spectra were measured at room temperature. The lifetime of the species in the closed cell was more than 30 min. The accuracy of the measurements was better than 50 kHz.

Results

Few studies have been devoted to functional ethynylarsines¹⁸ and no primary or secondary ethynylarsine has been described up to now. We have prepared ethynylarsinous dichloride (1a) by condensation of ethynyltributylstannane onto arsenic trichloride. After distillation, arsine 1a is obtained in the presence of arsenic trichloride, diethynylarsinous chloride, and triethynylarsine.¹¹ Purification by trap-to-trap distillation leads to a significant loss of product. The reduction of the crude mixture using tributylstannane (Bu₃SnH)¹² in decahydronaphthalene leads after purification by trap-to-trap distillation to ethynylarsine (2a)in pure form (yield 34%). The structure is assigned on the basis of IR, HRMS, and low-temperature (-30 °C) NMR spectra. The ¹H NMR spectrum of **2a** shows a triplet at δ 2.37 and a doublet at δ 3.40 (⁴J_{HH} = 2.8 Hz); these two signals are assigned to \equiv C-H and As-H₂, respectively. The ¹³C NMR spectrum shows two signals at δ 71.5 for As—C = and δ 92.6 for =C—H with coupling constants ${}^{2}J_{CH} = 45.6$ Hz and ${}^{1}J_{CH} = 245.3$ Hz, respectively, which are characteristic of acetylenic derivatives. The ¹³C-¹³C coupling constant of 147.2 Hz has been determined from the NMR spectra of the compound 2e and is consistent with

⁽¹²⁾ We already used this reagent for the preparation of vinylarsines starting from chloroarsenic derivatives: Guillemin, J. C.; Lassalle, L. Organometallics **1994**, *13*, 1525–1527.

⁽¹³⁾ Similar experiments have already been described to prepare volatile phosphines: Cabioch, J. L.; Denis, J. M. J. Organomet. Chem. 1989, 377, 227-233. Guillemin, J. C.; Savignac, P.; Denis, J. M. Inorg. Chem. 1991, 30, 2170-2173.

⁽¹⁴⁾ For other vacuum gas-solid reaction (VGSR) experiments, see, for example: De Corte, B.; Denis, J. M.; De Kimpe, N. J. Org. Chem. 1987, 52, 1147-1149. Lacombe, S.; Pellerin, B.; Guillemin, J. C.; Denis, J. M.; Pfister-Guillouzo, G. J. Org. Chem. 1989, 54, 5958-5963. Guillemin, J. C.; Janati, T.; Guenot, P.; Savignac, P.; Denis, J. M. Angew. Chem. Int. Ed. Engl. 1991, 30, 196-198. Billups, W.E.; Haley, M. M. J. Am. Chem. Soc. 1991, 113, 5084-5085.

⁽¹⁵⁾ Burie, J.; Boucher, D.; Demaison, J.; Dubrulle, A. J. Phys. (Paris) 1982, 43, 1319-1325.

⁽¹⁶⁾ Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R.L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian92, Revision E.2, Gaussian, Inc., Pittsburgh, PA, 1992.

 ⁽¹⁷⁾ Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283. Wadt,
 W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284-298; Hay, P. J.; Wadt, W.
 R. J. Chem. Phys. 1985, 82, 299-310.

⁽¹⁸⁾ BenaIm, J. C. R. Acad. Sc. (Paris) 1965, 261, 1996-1999. Yagudeev, T. A.; Dzhakiyaev, G. M.; Nurgalieva, A. N.; Godovikov, N. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1982, 4, 933-935; Chem. Abstr. 1982, 97, 55936. Mitchell, H. L. U.S. Patent 4 522 932, April 23, 1984; Chem. Abstr. 1986, 104, 75998.

Table 1. Measured Ground-State Rotational Frequencies (MHz) of CH₃C=As

J	K	Fexp	$e - c^a$	J	K	Fexp	$e - c^a$	J	K	F_{exp}	$e - c^a$
13	3	98 419.347	-0.006	21	2	154 654.476	-0.005	61	7	435 214.083	0.017
13	9	98 343.062	0.063	21	3	154 646.124	-0.021	61	8	435 144.812	-0.054
13	10	98 322.995	0.102	21	4	154 634.507	0.029	61	9	435 066.480	-0.020
13	11	98 300.811	0.120	21	5	154 619.589	0.106	61	10	434 979.002	0.013
13	12	98 276.541	0.141	21	7	154 579.539	0.012	61	11	434 882.349	-0.010
20	0	147 632.954	0.023	21	8	154 554.570	-0.007	65	0	463 464.823	0.008
20	1	147 631.325	-0.014	21	9	154 526.289	-0.033	65	1	463 459.909	0.006
20	2	147 626.553	-0.010	21	10	154 494.744	-0.026	65	2	463 445.172	0.004
20	3	147 618.629	0.025	21	11	154 459.913	-0.016	65	3	463 420.621	0.006
20	4	147 607.445	-0.020	21	12	154 421.795	-0.014	65	4	463 386.254	0.003
20	5	147 593.158	0.009	21	15	154 287.873	-0.017	65	5	463 342.089	0.004
20	6	147 575.672	0.013	61	0	435 440.455	-0.007	65	6	463 288.139	0.009
20	7	147 554.993	-0.009	61	1	435 435.831	-0.006	65	7	463 224.404	0.002
20	8	147 531.210	0.029	61	2	435 421.956	-0.005	65	8	463 150.914	-0.004
20	9	147 504.214	0.009	61	3	435 398.838	-0.002	65	9	463 067.681	-0.020
20	10	147 474.078	-0.003	61	4	435 366.480	0.001	65	10	462 974.749	-0.024
21	0	154 661.125	-0.026	61	5	435 324.894	0.006	65	11	462 872.219	0.058
21	1	154 659.453	-0.030	61	6	435 274.086	0.007				

^a Calculated with the parameters of Table 2.

Scheme 1

Scheme 2

$$2a \xrightarrow{Na_2CO_3, 80^{\circ}C} \begin{bmatrix} CH_2 = C = AsH \\ 5a \end{bmatrix} \xrightarrow{} CH_3 - C \equiv As} 3a$$

the reported data of alkynes.¹⁹ In the IR spectrum of **2a**, values at 3318 cm⁻¹ and 2180 cm⁻¹ are typical of $\nu_{\equiv CH}$ and $\nu_{C\equiv C}$ stretching, respectively. The ν_{As-H} absorption is observed at 2118 cm⁻¹. The mass spectrum confirms the presence of the molecular ion corresponding to the C₂H₃As structure (calculated 101.9451, observed 101.945). The half-life of **2a** (3% in CDCl₃) is of about 30 min at room temperature; a brown material is slowly formed under these conditions (Scheme 1).

Arsaalkyne 3a is obtained in a 29% yield by rearrangement of 2a on solid sodium carbonate heated to 80 °C (VGSR conditions).¹⁴ A plausible mechanism for the rearrangement $2a \rightarrow 3a$ involves the arsaallene parent compound 5a as intermediate (Scheme 2); however all attempts to characterize this species by low-temperature NMR analysis were unsuccessful. The mild conditions needed for this rearrangement can be explained by a high As-H acidity of the ethynylarsine (2a) due to the presence of an adjacent carbon-carbon triple bond. A similar effect has already been observed with oxygen, nitrogen, and phosphorus derivatives.⁶ The ¹H NMR spectrum of ethylidynearsine (3a) shows a singlet at δ 2.09 assigned to the protons of the methyl group. The two signals at δ 24.2 (¹J_{CH} = 132.0 Hz) and 196.4 $(^{2}J_{CH} = 12.5 \text{ Hz})$ observed in the ¹³C NMR spectrum are assigned to CH_3 and C = As, respectively. The latter value is consistent with the corresponding chemical shift reported for the aryl derivative ($\delta_{C=As}$ 191 ppm).² The ${}^{1}J_{CC}$ coupling constant of 41.3 Hz observed on the spectrum of 3e is smaller than the values reported for nitriles.²⁰ The half-life of **3a** in CDCl₃ is 1 h at 0 $^{\circ}C$ and arsaalkyne 3a undergoes decomposition under these conditions with formation of brown, arsenic-containing compounds.

Microwave Spectroscopy. Rotational and Centrifugal Distorsion Constants. Ab initio calculations have been recently reported for the R—C=As species with R = H^{21a} and R = H, F, CH₃, and C₆H₅.^{21b} This last calculation was performed with the MOLPRO program at a level of valence electron CEPA (Coupled Electron Pair Approximation). It gives an approximate value of the dipole moment μ (CH₃—C=As) = 1.15 D and two interatomic distances r(C–C) = 1.464 Å and r(C–As) = 1.656 Å (the geometry of the CH₃ group has been kept fixed at an old experimental structure of methyl cyanide: r(C–H) = 1.103 Å and \angle (HCC) = 109.5°).²²

An approximate value of the *B* rotational constant is first calculated using the *ab initio* structure.^{21a} Rough values of the centrifugal distortion constants D_J and D_{JK} are also obtained by scaling the corresponding constants of methyl cyanide.²³ The assignment of the rotational transitions is relatively straightforward because CH₃C=As exhibits a typical prolate symmetric top spectrum with a well-resolved K structure. Furthermore the high K transitions show a characteristic nuclear quadrupole hyperfine structure due to the ⁷⁵As nucleus (I = 3/2). The hypothetical unperturbed frequency of the split lines is first calculated as the intensity-weighted mean of the multiplet frequencies.²⁴ The frequencies are listed in Table 1.

The frequency of a rotational transition J + 1, $K \leftarrow J$, K in the ground vibrational state may be written as²⁵

$$\nu = 2B(J+1) - 4D_{J}(J+1)^{3} - 2D_{JK}(J+1)K^{2} + H_{J}(J+1)^{3}[(J+2)^{3} - J^{3}] + 4H_{JK}(J+1)^{3}K^{2} + 2H_{KJ}(J+1)K^{4}$$
(1)

A linear least-squares method is used to fit the unsplit experimental frequencies to the parameters of the above equation. The derived parameters are listed in Table 2, together with their standard deviation and their correlation coefficients.

Quadrupole Coupling Constant. The hyperfine structure is separately analyzed using the first-order perturbation theory. The resulting first-order formula for the quadrupole energy is²⁵

 ⁽¹⁹⁾ Frei, K.; Bernstein, H. J. J. Chem. Phys. 1963, 38, 1216. Graham,
 D. M.; Holloway, C. E. Can. J. Chem. 1963, 41, 2114-2118.
 (20) Gray, G. A. Maciel, G. E. Ellis, P. D. J. Magan Reson 1969, 1

⁽²⁰⁾ Gray, G. A.; Maciel, G. E.; Ellis, P. D. J. Magn. Reson. 1969, 1, 407-417.

^{(21) (}a) Lohr, L. L.; Scheiner, A. C. J. Mol. Struct. (Theochem) 1984, 109, 195–200. Dobbs, K. D.; Boggs, J. E.; Cowley, A. H. Chem. Phys. Lett. 1987, 141(5), 372–375. (b) Schmidt, H. M.; Stoll, H.; Preuss, H.; Becker, G.; Wurdt, O. L. Mol. Struct. (Theochem + 1992, 262, 121, 185).

Mundt, O. J. Mol. Struct. (Theochem.) 1992, 262, 171–185.
 (22) Duncan, J. L.; Mc Kean, D. C.; Michie, N. O. J. Mol. Struct. 1974, 21, 405–410.

⁽²³⁾ Demaison, J. J. Mol. Struct. 1976, 31, 233–236; Demaison, J.; Le Guennec, M.; Wlodarczak, G.; Van Eijck, B. P. J. Mol. Spectrosc. 1993, 159, 357–362.

⁽²⁴⁾ Rudolph, H. D. Z. Naturforsch, A. 1968, 23, 540-543.

⁽²⁵⁾ Gordy, W.; Cook, R. L. In Microwave Molecular Spectra; Wiley: New York, 1984.

Table 2. Ground-State Molecular Constants for CH₃C=As^a

parameter	value	correlation matrix							
B (MHz)	3515.51730(21)	1.000		······					
D_{J} (kHz)	0.507371(25)	0.945	1.000						
D_{JK} (kHz)	37.9888(48)	0.671	0.551	1.000					
HIR (HZ)	0.08904(39)	0.702	0.706	0.849	1.000				
H _{KJ} (Hz)	0.887(22)	0.400	0.256	0.854	0.513	1.000			
no. of lines: 53	3								

" The errors shown in parentheses are standard errors and are in units of the last digit.

$$E_{Q}(J,K,F) = eqQ[(3K^{2}/J(J+1)) - 1]Y(I,J,F)$$
(2)

where eqQ is the quadrupole coupling constant and Y(I,J,F) the Casimir function. The hyperfine splittings listed in Table 3 are fit to the above formula by using a linear least-squares fit. The derived quadrupole coupling constant is $eqQ(^{75}As) = -155.41$ -(45) MHz.

(1) Excited Vibrational State. One strong vibrational satellite series extending to the high-frequency side was readily assigned. It obviously belongs to a degenerate vibration $v_t = 1$ which is very likely the C—C=As bending mode (by analogy with CH_3CN and CH_3CP). The measured transitions are given in Table 4. The molecular parameters have been derived using the perturbation formulation of Amat, Nielsen, and Tarrago:²⁶

$$v = 2B^*(J+1) - 4D_J(J+1)^3 - 2D_{JK}(J+1)(kl-1)^2 + 2H_{KJ}(J+1)K^4 + 2\rho^*(J+1)(kl-1)$$

$$\pm [q_0(J+1) - 2q_1(J+1)^3] \text{ if } kl = 1 + \frac{q_0^2(J+1)^3}{4(kl-1)(A-B-A\zeta)} \text{ if } kl \neq 1$$
(3)

The derived constants are listed in Table 5. An approximate value of the vibrational frequency may be calculated from the experimental *l*-type doubling constant using the semiempirical formula of Grenier-Besson:27

$$q = \frac{aB^2}{\omega} \tag{4}$$

The *a* parameter is a complicated function of the force field, but it has been found to vary in a very small range near two. In the present case, it has been estimated from the parameters of the similar molecules CH_3CN^{28} and CH_3CP^{29} to be 2.3. This gives $\omega_8 = 274$ cm⁻¹. To check this result, we have calculated at the MP2 level the harmonic vibrational frequencies for CH₃-CN, CH₃CP, and CH₃CAs. The results are reported in Table 6. They are compared with the best available experimental frequencies, when they exist. There is no large discrepancy between ab initio and experimental frequencies. The average percent difference for the calculated frequencies from the experimental harmonic fundamentals are about 5%. The differences may be explained in part by the imperfect anharmonicity correction and in part by the basis set incompleteness. It is interesting to note that the C-H stretch is well predicted and that

Table 3. Nuclear Quadrupole Hyperfine Splittings of CH₃C=As

		<u> </u>			
J	K	Fo	F	$\Delta \nu(\exp)^a$	e-c
13	9	29/2	27/2	6.952	0.035
			25/2	6.119	0.023
			23/2	-0.824	-0.004
13	10	29/2	27/2	8.561	0.022
			25/2	7.452	-0.003
			23/2	-1.103	-0.019
13	11	29/2	27/2	10.346	0.014
			25/2	8.940	-0.017
			23/2	-1.735	0.000
13	12	29/2	27/2	12.305	0.009
			25/2	10.581	-0.022
		,	23/2	-1.684	0.009
20	6	43/2	41/2 j	0 908	_0.001
	•	37/2	39/2]	0.700	0.001
20	7	43/2	41/2	1 236	0.000
-•		37/2	39/2		0.000
20	8	43/2	41/2	1.611	-0.003
		37/2)	39/2		
20	9	43/2	41/2	2.034	-0.007
		37/2)	39/2		
21	7	45/2	43/2	1.075	0.000
		39/2)	41/2)		
21	8	45/2	43/2	1.405	0.001
		39/21	41/2		
21	9	43/2	43/2	1.775	-0.001
		35/2	41/2)		
21	10	43/2	43/2	2.180	-0.011
		15/2)	41/2)		
21	11	39/2	$\{\frac{7}{41}, \frac{7}{2}\}$	2.648	-0.003
21	15	45/2	$\frac{41}{2}$	4 935	_0.001
<u>4</u> 1	15	73/2	$\frac{43}{2}$	4 570	0.020
			39/2	-0 346	0.020
				0.540	0.040

^a Splitting: $\nu(F_0 + 1 \leftarrow F_0) - \nu(F + 1 \leftarrow F)$ in MHz.

its frequency decreases from N to As, which is in agreement with the corresponding increase of the C-H bond length.³⁰

(2) Molecular Structure. The rotational spectra of seven isotopomers have been measured in order to determine a structure. The rotational frequencies are listed in Tables 7 and 8 and the rotational constants are given in Table 9. Substitution coordinates of the two carbon atoms were calculated using Kraitchman's equations^{31,32} and either CH_3CAs or ¹³ $CH_3^{13}CAs$ as parent species. Both species give almost the same CC distance: 1.4652 and 1.4653 Å. According to the empirical rule of Costain,³³ the error for the substitution coordinate is inversely proportional to the Cartesian coordinate z:

$$\sigma(z) = \frac{0.005}{|z|} \tag{5}$$

where the empirical constant 0.0005 $Å^2$ was proposed by Van Eijck³⁴ following a study of many structures. As the smallest Cartesian coordinate is rather large (about 1 Å), the derived $r_s(C-C)$ distance should be fairly accurate: application of eq 5 giving $\sigma(r) = 0.0005$ Å.

As many isotopomers have been investigated, it should be possible to determine the four independent structural parameters $[r(C-H), r(C-C), r(C \equiv As) \text{ and } \angle(HCC)]$ by a least-squares fit to the moments of inertia. This gives the effective or r_0 structure which is given in Table 10. The value of r(C-H) is much too large. This is due to two factors: first, the axial rotational constant A could not be determined and, therefore, r(C-H) cannot be determined with precision (it is highly correlated with \angle (HCC)). Moreover, in the particular case of a $C(sp^3)$ -H bond, it is well established that the r_0 value is about 0.0056 Å larger than the

(32) Costain, C. C. J. Chem. Phys. 1958, 29, 864–874.
 (33) Costain, C. C. Trans. Am. Crystallogr. Assoc. 1966, 2, 157–164.

(34) Van Eijck, B. P. J. Mol. Spectrosc. 1982, 91, 348-362.

⁽²⁶⁾ Amat, G.; Nielsen, H. H.; Tarrago, G. In Rotation-vibration of polyatomic molecules; Dekker: New York, 1971

⁽²⁷⁾ Grenier-Besson, M. L. J. Phys. Radium 1960, 21, 555-565.

^{(28) (}a) Chen, W. D.; Bocquet, R.; Boucher, D.; Demaison, J.; Włodarczak, G. J. Mol. Spectrosc. 1991, 150, 470–476. (b) Duncan, J. L.; McKean, D. ; Tullini, F.; Nivellini, G. D.; Perez-Peña, J. J. Mol. Spectrosc. 1978, 69, 123-140.

^{(29) (}a) Kroto, H. W.; Nixon, J. F., Simmons, N. P. C. J. Mol. Spectrosc. 1979, 77, 270–285. (b) Ohno, K.; Matsuura, H.; McNaughton, D.; Kroto, H. W. J. Mol. Spectrosc. 1985, 111, 415-424.

 ⁽³⁰⁾ McKean, D. C. Chem. Soc. Rev. 1978, 7, 399-422.
 (31) Kraitchman, J. Am. J. Phys. 1953, 21, 17-24.

Table 4. Transition Frequencies (MHz) for the Excited State $v_8 = 1$ of CH₃C=As

J	kl	1	Fexp	e – c ^a	J	kl	1	Fexp	e – c ^a
20	0	1	148 013.475	-0.012	28	6	1	204 319.554	0.099
20	1	1	148 089.263	-0.023	28	7	1	204 293.970	0.171
20	1	-1	147 943.271	-0.086	31	0	1	225 501.741	0.049
20	-1	-1	148 010.337	0.007	31	1	1	225 620.917	-0.041
20	2	1	148 015.788	-0.043	31	1	-1	225 398.745	-0.015
20	-2	-1	148 003.344	0.032	31	-1	-1	225 498.920	0.029
20	3	1	148 009.192	0.024	31	-3	-1	225 473.528	0.001
20	-3	-1	147 992.998	0.037	31	4	1	225 486.580	-0.035
20	4	1	148 000.122	-0.009	31	-4	-1	225 453.007	-0.027
20	6	1	147 972.570	0.126	31	5	1	225 467.752	-0.033
21	0	1	155 059.639	-0.072	31	5	-1	225 427.441	0.001
21	1	1	155 139.205	-0.070	31	6	1	225 444.235	0.023
21	1	-1	154 986.223	-0.077	31	-6	-1	225 397.030	-0.049
21	-1	-1	155 056.475	-0.079	31	7	1	225 415.872	0.195
21	2	1	155 062.443	-0.098	42	-1	-1	302 936.988	-0.022
21	-2	-1	155 049.040	0.088	42	1	1	303 104.065	-0.015
21	3	-1	155 038.250	0.061	42	2	1	302 966.562	0.079
21	4	1	155 045.817	0.022	42	-2	-1	302 924.728	0.038
21	-4	-1	155 023.985	0.077	42	3	1	302 947.088	-0.021
21	5	1 .	155 033.037	0.062	42	-3	-1	302 904.699	-0.072
21	5	-1	155 006.359	0.064	42	5	1	302 900.581	-0.125
21	6	1	155 016.975	0.116	42	6	1	302 868.732	-0.167
28	1	1	204 480.039	-0.049	42	7	1	302 830.596	-0.155
28	1	-1	204 278.577	-0.025	42	8	1	302 786.095	-0.098
28	3	-1	204 346.688	-0.018	42	9	1	302 735.139	0.070
28	4	1	204 357.862	-0.031	42	-9	-1	302 640.931	-0.039
28	-4	-1	204 327.938	0.055	52	1	1	373 487.211	0.013
28	5	1	204 340.926	-0.065	52	-1	-1	373 276.539	0.094
28	-5	-1	204 304.798	0.015	52	3	1	373 299.397	0.116

^a Calculated with the parameters of Table 5.

Table 5. Molecular Constants for the Degenerated Excited State $v_8 = 1^a$

parameter	value				correlation	n matrix	<u></u>		
<i>B</i> * (MHz)	3524.65307(45)	1.000							
D _J (kHz)	0.51875(12)	0.800	1.000						
D_{JK} (kHz)	38.310(25)	0.579	0.206	1.000					
H_{KJ} (Hz)	2.25(33)	0.525	0.245	0.953	1.000				
ρ^* (kHz)	-18.060(57)	-0.343	-0.112	-0.648	-0.660	1.000			
$a_0^2/(A-B-A\zeta)(kHz)$	0.8200(23)	0.111	0.092	0.157	0.160	-0.426	1.000		
q_0 (MHz)	3.4824(16)	-0.058	-0.156	0.044	0.023	-0.029	-0.007	1.000	
q_1 (Hz)	5.54(49)	-0.078	-0.311	0.132	0.080	-0.085	-0.011	0.848	1.000

^a The errors shown in parentheses are standard errors and are in units of the last digits.

Table 6. Harmonic Vibrational Frequencies Calculated at the MP2 Level for $CH_3C=X$ (with $X = N, P, As)^a$

			CH₃C≡N			CH₃C≡P		CH ₃ C=As
no.	sym	ω	exptl ^b	% diff	ω	exptl ^c	% diff	ω
1	A1	3048	3044	-0.1	3016	3019	0.1	3010
2	A ₁	2065	2294	11.1	1489	1574	5.7	1452
3	A	1475	1418	-3.9	1456	1394	-4.3	1394
4	A	894	929	4.0	689	750	8.9	574
5	Ē	3157	3135	-0.7	3113	3085	-0.9	3107
6	E	1529	1476	-3.5	1515	1466	-3.2	1512
7	E	1108	1062	-4.1	1071	1008	-5.9	1068
8	E	348	365	5.0	266	302	13.6	262

^a Frequencies ω are in cm⁻¹. ^b Reference 28b. ^c Reference 29b.

 r_e value.³⁵ The C—C and C=As distances seem to be precisely determined. But, in fact, they are also highly correlated ($\rho = -0.998$). This is due to the fact that the Arsenic atom has no stable isotope and, therefore, cannot be substituted. To circumvent this problem, it is possible to use the $r_s(C-C)$ value as auxiliary information in the least-squares fit. In this method, called the mixed estimation,³⁶ the data r(C-C) = 1.465(2) Å is added directly to the data matrix with a weight inversely proportional to the square of its estimated accuracy. In this way, the correlation between r(C-C) and r(C=As) is significantly reduced and the derived value for $r_0(C=As)$, 1.660(1) Å, is in very good agreement

with that found in the ordinary least-squares fit, 1.661(1) Å. This suggests that this distance is probably accurately determined.

It is not possible to directly compare the experimental results to the *ab initio* calculations because, although the calculated bond angles are generally rather accurate, the bond lengths are computed with errors ranging up to a few hundreds of an angström.³⁷ But it has been noticed that these errors are largely systematic, provided the basis set is of adequate size. So, the *ab initio* calculations may be used to compare similar bond lengths (as long as the same method and the same basis set are used). Geometries for the CH₃CX molecules (with X = N, P, and As) were fully optimized by the analytical gradient method at the

⁽³⁵⁾ Demaison, J.; Wlodarczak, G. Struct. Chem. 1994, 5, 57-66.
(36) Belsley, D. A. Conditioning Diagnostics; Wiley, New York, 1991; p
298.

⁽³⁷⁾ Boggs, J. A. In Accurate Molecular Structures; Domenicano, A., Hargittai, I., Eds.; Oxford University Press: Oxford, 1992; p 322.

Table 7. Transition Frequencies (MHz) for the Observed Symmetric Isotopic Species of CH₃C=As

1		F	e_ 74	1	K	F		1	ĸ		e _ ~4
5			e - t-	42		307107 634	0.005			149446 451	e - c-
				43	1	50/10/.034	0.005	24	-	147440.431	-0.038
21	0	148472.688	0.001	43 42	2	307097.746	0.015	24 24	2	149442.873	-0.038
21	2	148466 499	0.003	43	3 4	307058 229	0.005	24 24	3 4	147430.933	-0.003
21	3	148458.782	0.011	43	6	306992.407	-0.012	24	6	149404.644	0.023
21	6	148417.096	0.010			¹³ CH ₃ ¹³ C=As		24	7	149389.146	0.014
22	0	155219.513	-0.010	21	0	147558.086	0.018	24	8	149371.199	0.067
22	1	155217.897	-0.008	21	1	147556.542	0.024	24	9	149350.939	0.046
22	2	155213.092	-0.045	21	2	147551.936	0.018	24	10	149328.280	0.036
22	3	155204.951	0.027	21	3	147544.283	-0.016	24	11	149303.246	0.014
32	0	222671 530	-0.010	21	7	147302.788	-0.000	24	12	149273.840	-0.023
32	ĩ	222669.193	0.019	21	8	147459.833	-0.006	25	ĭ	155422.332	0.029
32	2	222662.271	0.011	21	9	147433.779	-0.010	25	2	155418.618	0.022
32	3	222650.715	0.017	21	5	147519.703	-0.022	25	3	155412.431	0.007
32	4	222634.553	0.010	21	4	147533.536	-0.028	32	0	197248.789	0.010
32	5	222613.804	-0.030	22	0	154263.353	0.022	32	1	197247.192	0.033
32	0	222388.300	-0.001	22	2	154261.750	0.018	32	2 3	197242.490	-0.012
33	ĩ	229412.477	0.002	22	3	154248.921	-0.010	32	4	197223.603	0.006
33	2	229405.337	0.010	22	6	154205.531	0.025	32	5	197209.448	-0.009
33	3	229393.446	0.005	29	0	201192.491	0.003	32	6	197192.162	-0.043
33	4	229376.797	-0.001	29	1	201190.396	0.005	33	0	203222.718	0.038
33	5	229355.372	0.011	29	2	201184.115	0.008	33	1	203221.101	0.033
33	0	229329.202	0.010	29	3	2011/3.645	0.015	33	2	203216.252	0.016
34	1	236155.375	-0.001	22	4	154237.672	-0.006	33	4	203196.810	-0.003
34	2	236148.056	-0.028	22	5	154223.215	-0.002	33	5	203182.186	0.017
34	3	236135.777	0.009	22	7	154184.749	-2.809	33	6	203164.365	-0.006
34	4	236118.637	0.010	22	8	154160.612	0.039	33	7	203143.369	-0.100
34	5	236096.605	0.005	22	9	154133.390	0.025	33	8	203119.027	-0.093
34	6	236069.698	-0.021	29	5	201140.231	-0.035	33	9	203091.522 $13CD_{13}C = A_{5}$	-0.171
45		210200 (55	0.011	20	7	201117.200	0.002			155520 (40	
45	1	310298.655	-0.016	29	2 2	201090.023	0.021	26	0	155529.649	0.088
45	3	310272.980	0.012	29	9	201023.267	-0.006	26	2	155524.908	-0.019
	5	CH ₃ ¹³ C≡As	0.010	29	12	200892.067	-0.002	26	3	155518.839	-0.009
21	0	153619.267	0.011	33	0	228002.041	0.007	26	4	155510.340	0.006
21	1	153617.615	0.006	33	1	227999.697	-0.018	39	0	230367.748	0.017
21	2	153612.639	0.009	33	2	227992.575	-0.004	39	1	230365.973	0.003
21	3	153604.378	-0.017	33	3	227980.725	0.002	39	2	230360.627	-0.018
21	0	153559.000	-0.001	33	4	22/904.142	-0.007	39	3	230351.071	-0.007
31	1	223409.261	0.038	45	ŏ	308391.627	-0.014	39	5	230323.039	0.000
31	2	223402.094	-0.010	45	1	308388.421	0.000	39	6	230303.349	0.013
31	3	223390.094	-0.034	45	2	308378.844	0.001	40	0	236122.530	-0.018
31	4	223373.194	0.032	45	3	308362.881	0.009	40	1	236120.684	-0.005
31	5	223351.562	0.019	45	4	308340.584	-0.026	40	2	236115.189	-0.010
31	6	223325.121	0.006	45	5	308311.849	0.007	40	3	236106.012	0.002
32	1	230386.535	0.021	46	õ	315087.704	-0.017	40	5	236076.698	-0.003
32	2	230379.130	-0.012	46	ĩ	315084.443	-0.016	40	6	236056.514	0.006
32	3	230366.703	0.018	46	2	315074.669	-0.022	53	Ō	310901.302	0.007
32	4	230349.368	-0.002	46	3	315058.331	0.021	53	1	310898.896	0.011
32	6	230299.813	-0.033	46	6	314970.389	0.029	53	2	310891.698	0.003
33	0	237366.005	-0.035	22 55	0	373327.515	0.015	53 52	3	310879.685	0.006
33	2	237355.750	0.005	55	2	375312.067	-0.008	53		310841.272	-0.012
33	3	237342.991	-0.004	55	3	375292.742	-0.019	53	6	310814.842	-0.004
33	4	237325.107	0.005	55	6	375188.383	0.004	54	Ō	316650.748	-0.036
33	5	237302.124	0.005	55	9	375014.787	-0.007	54	1	316648.267	0.000
33	6	237274.038	0.001			CD ₃ C=As	<u> </u>	54	2	316640.934	-0.003
43	0	307110.957	-0.025	24	0	149447.652	-0.046	54	3	316628.666	0.038
								54	6	316562.681	-0.002

^a Calculated with the parameters of Table 9.

MP2 level with the LANL1DZ basis set (DZ for CH₃CN). Optimized parameters are reported in Table 11. There are three important features of the results to which attention should be drawn. (i) The angle \angle (HCC) slightly increases from X = N to X = As. It is further in good agreement with the experimental structure. (ii) Likewise, the CH distance increases from X = N to X = As. The increase from CH₃CN to CH₃CAs is 0.004 Å and the experimental r_e (C-H) value in CH₃CN is 1.087(2) Å,³⁸ so the r_e (C-H) distance in CH₃CAs should be approximately

1.091(3) Å. (iii) Likewise, for the C-C distance, the increase from CH₃CN to CH₃CAs is 0.009 Å (in close agreement with the CEPA calculations);^{21a} with the $r_e(C-C)$ value in CH₃CN being 1.457(2) Å, which gives for CH₃CAs 1.466(3) Å. This result is in close agreement with the r_s value. This gives further confidence in the accuracy of determined structure.

⁽³⁸⁾ Le Guennec, M.; Wlodarczak, G.; Burie, J.; Demaison, J. J. Mol. Spectrosc. 1992, 154, 305-323.

Table 8. Transition Frequencies (MHz) in CH₂DC=As and CHD₂C=As

J	<i>K</i> _	<i>K</i> +	←	J	<i>K</i> _	K+	Fexp	e – cª	J	<i>K</i> _	<i>K</i> +	←	J	<i>K</i> _	<i>K</i> +	F _{exp}	$e-c^a$
				CI	$H_2DC =$	As			31	2	30		30	2	29	205 580.224	0.001
22	1	21		21	1	20	146 163.178	0.080	31	2	29		30	2	28	205 595.717	0.009
22	ī	22		21	ī	21	145 674.788	0.027	31	3	28		30	3	27	205 576.100	-0.023
22	2	20		21	2	19	145 921.291	0.040	31	4	27		30	4	26	205 563.015	-0.065
22	3	19		21	3	18	145 911.191	-0.006	31	5	27		30	5	25	205 547.134	0.007
22	4	18		21	4	17	145 902.254	-0.022	39	1	39		38	1	38	258 163.156	-0.034
22	5	17		21	5	16	145 891.056	-0.035					CH	ID ₂ C=	As	_	
22	6	16		21	6	15	145 877.478	-0.039	24	0	24		23	0	23	150 831.359	0.030
22	7	15		21	7	14	145 861.434	-0.084	24	1	24		23	1	23	150 567.719	0.025
23	0	23		22	0	22	152 546.217	0.103	24	1	23		23	1	22	151 106.543	0.054
23	1	23		22	1	22	152 294.352	0.019	24	2	23		23	2	22	150 834.183	-0.019
23	1	22		22	1	21	152 804.893	0.059	24	2	22		23	2	21	150 843.498	0.036
23	2	21		22	2	20	152 552.613	0.019	24	3	21		23	3	20	150 830.685	-0.049
23	3	20		22	3	19	152 541.697	-0.005	24	5	20		23	5	19	150 810.173	-0.027
23	5	19		22	5	18	152 520.599	-0.037	24	6	19		23	6	18	150 796.471	-0.035
23	6	18		22	6	17	152 506.394	-0.045	24	7	18		23	7	17	150 780.310	-0.084
23	7	17		22	7	16	152 489.631	-0.078	24	8	17		23	8	16	150 761.751	-0.090
23	8	16		22	8	15	152 470.385	-0.045	31	1	31		30	1	30	194 461.962	-0.015
23	9	15		22	9	14	152 448.495	-0.100	31	1	30		30	1	29	195 157.632	0.001
29	1	29		28	1	28	192 005.749	0.014	31	2	29		30	2	28	194 826.695	-0.023
29	1	28		28	1	27	192 649.134	0.014	31	2	30		30	2	29	194 806.766	0.001
29	2	27		28	2	26	192 336.336	0.018	31	3	29		30	3	28	194 804.601	0.063
29	2	28		28	2	27	192 323.639	0.000	31	4	28		30	4	27	194 792.257	-0.004
29	4	25		28	4	24	192 307.187	0.007	31	6	26		30	6	25	194 759.692	0.075
29	6	23		28	6	22	192 274.316	-0.022	33	0	33		32	0	32	207 354.155	0.030
29	7	22		28	7	21	192 253.223	0.016	33	1	33		32	1	32	207 000.382	0.003
29	8	21		28	8	20	192 228.901	0.025	33	1	32		32	1	31	207 740.753	-0.049
29	9	20		28	9	19	192 201.404	0.075	33	2	31		32	2	30	207 391.634	-0.032
30	0	30		29	0	29	198 947.082	0.000	33	2	32		32	2	31	207 367.600	-0.001
30	1	29		29	1	28	199 288.670	-0.031	33	3	31		32	3	30	207 366.154	0.117
30	1	30		29	1	29	198 623.242	0.053	33	4	29		32	4	28	207 352.850	0.033
30	2	28		29	2	27	198 966.155	0.016	33	5	28		32	5	27	207 336.925	-0.014
30	2	29		29	2	28	198 952.117	0.014	33	6	27		32	6	26	207 318.037	0.080
30	3	27		29	3	26	198 947.785	-0.070	33	8	25		32	8	24	207 270.252	0.112
30	4	26		29	4	25	198 935.277	-0.014	41	0	41		40	0	40	257 566.006	0.000
30	5	25		29	5	24	198 919.860	-0.016	41	1	41		40	1	40	257 138.992	-0.052
30	7	23		29	7	22	198 879.442	0.027	41	1	40		40	1	39	258 058.221	-0.040
30	8	22		29	8	21	198 854.301	0.061	41	2	39		40	2	38	257 642.423	-0.008
30	9	21		29	9	20	198 825.831	0.091	41	2	40		40	2	39	257 596.321	-0.026
31	0	31		30	0	30	205 574.198	-0.018	41	3	38		40	3	37	257 599.457	0.027
31	1	31		30	1	30	205 240.296	0.002	41	3	39		40	3	38	257 599.054	0.053
31	1	30		30	1	29	205 927.901	-0.026	41	4	37		40	4	36	257 581.748	0.004

^a Calculated with the parameters of Table 9.

Table 9. Ground-State Rotational and Centrifugal Distorsion Constants for All Isotopic Species Observed^a

	¹³ CH ₃ C≡As	CH ₃ ¹³ C≡As	¹³ CH ₃ ¹³ C=As	CD₃C≔As	¹³ CD ₃ ¹³ C = As		CDH ₂ C=As	CD₂HC ≔ As
$B (MHz)$ $D_J (kHz)$ $D_{JK} (kHz)$ $H_{JK} (Hz)$ $H_{KJ} (Hz)$	3374.83399(14) 0.469724(49) 35.1701(84) 0.0791(29)	3491.83067(21) 0.499410(76) 37.756(13) 0.0877(45)	3354.04126(11) 0.462786(24) 35.0255(44) 0.07769(64) 0.790(31)	2989.40321(45) 0.36060(24) 23.91(10) 0.0356(67)	2880.66848(21) 0.334817(42) 22.510(14) 0.04628(27)	A (MHz) B (MHz) C (MHz) $\Delta_J (kHz)$ $\Delta_{JK} (kHz)$ $\delta_J (kHz)$ $\delta_r (kHz)$	121600(175) 3327.9462(20) 3305.7345(16) 0.45654(34) 27.8948(52) 0.00362(46)	96538(73) 3154.2441(82) 3131.7200(82) 0.40784(29) 25.6946(84) 0.00233(33) 15(4)

^a The errors shown in parentheses are standard errors and are in units of the last digits.

Table 10. Experimental r_0 structure of CH₃C=As^a

	normal least-squares	mixed estimation ^b
C≡As	1.661(1)	1.660(1)
с—с	1.463(1)	1.465(2)
С—Н	1.106(6)	1.105(7)
∠(CCH)	110.55(20)	110.55(22)

^a Bond lengths in Å and angles in degrees. The errors shown in parentheses are standard errors and are in units of the last digit. ^b See text.

Conclusion

The first simple arsaalkyne 3a has been prepared by baseinduced rearrangement of the corresponding ethynylarsine and spectroscopically characterized. This result clearly points out that the ethynamine-nitrile³⁹ and the ethynylphosphine-phos**Table 11.** MP2/LANL1DZ *ab Initio* Structures of CH₃C=X (with X = N, P, As)^{*a*}

	r(C–C)	r(C–H)	∠(HCC)
CH₃C≡N	1.491	1.102	110.04
CH₃C≡P	1.497	1.105	110.78
CH₃C≡As	1.500	1.106	110.86

^a Bond lengths in Å and angles in degrees.

phaalkyne⁶ rearrangements can be generalized to the arsenic derivatives. This work paves the way to the chemistry of unstabilized arsaalkynes.

Acknowledgment. We thank Dr. J. Cosléou for his help during the submillimeter wave measurements. This work was supported by the CNRS (GDR Physico-Chimie des Molécules et Grains Interstellaires) and the Programme National de Planétologie (INSU-CNRS).

⁽³⁹⁾ Wentrup, C.; Briehl, H.; Lorencak, P.; Vogelbacher, U. J.; Winter, H.-W.; Maquestiau, A.; Flammang, R. J. Am. Chem. Soc. 1988, 110, 1337–1343.